Check COM Ports with R serial

Christopher Swingley, ABR

2022-03-25

Introduction

If you aren’t seeing latitude and longitude coordinatesin SealLog at any of the COM ports Windows is
displayingin the app, you may need to confirm that the GPS unit you are using is actually streaming
NMEA locations. You can use a terminal program like PuTTY, or the following script, which uses the
serial R library to communicate with serial ports on your computer.

The script itself is included with this PDF, read_serial.R. Open the script in RStudio and follow
along by highlighting the sections shown and running them in the console.

Before running the code, you need to make sure you have the tidyverse, lubridate,and serial
packages installed in R. You can install the latest version of all three with the code below, but if you
are already successfully using QA/QSea, serial is probably the only package you aren’t likely to
already have installed.

install.packages(c("tidyverse'", "lubridate", "serial"))

Libraries and Ports

The first part of the script loads the required R packages, and then prints a list of what ports are
available on your system.

library(tidyverse)
library(lubridate)
options(pillar.sigfig = 8)

See what ports are available:
listPorts()

COM1
COM3

If you get an error running listPorts() you may not have permission to access the serial ports,
which could be why Seal.og isn’t getting data. You might try logging in as a user with administrative

priviledges, starting R and/or Sealog “as an administrator”, or consulting with your IT Department
to get user-level access to the serial ports.

Choosing a port

Once you have the list of ports on your system, change the value of the port in serialConnection
to match the COM port you want to test. The mode option controls the speed used, and other con-
nection properties. The NMEA standard sets the speed to 4800 baud, so you shouldn’t need to
change this setting with any commercial GPS unit. If you are connecting to an external NMEA feed,
such as may be provided by the vessel, you may need to change this to whatever baud rate they
are using.

Change the port here (COM1, etc.)
#
Only change 4800 in the mode if you know for sure the NMEA stream is using a
different (and non-standard) baud rate
con <- serialConnection(
port = "COM1",
mode = "4800,n,8,1"
)

Reading data

The script opens the serial port and attempts to read 60 seconds of data, or the first 100 lines,
whichever comes first. A normal NMEA stream will typically get to 100 lines much faster than 60
seconds, so you should see results from this code very quickly.

open(con)

Read from the port for 60 seconds or once we've received 100 lines of data
num_lines = 0
time_seconds = 0
all_lines <- c()
while (num_lines < 100 & time_seconds < 60) {
data <- read.serialConnection(con)
lines <- str_split(data, "\\$")[[1]]
lines <- subset(lines, grepl(""GP", lines))
print(lines)
num_Llines <<- num_Llines + length(lines)
time_seconds <<- time_seconds + 1
all_lines <<- c(all_lines, lines)
Sys.sleep (1)

[1] "GPGGA,181528.000,6454.7439,N,14755.9877,W,1,10,0.8,200.2,M,4.7,M, ,0000x7A"
[2] "GPGSA,A,3,14,13,15,30,23,08,07,17,05,24,,,1.4,0.8,1.1%34"

[3] "GPRMC,181528.000,A,6454.7439,N,14755.9877,W,0.00,199.96,250322,,,Ax78"

[1] "GPGGA,181529.000,6454.7439,N,14755.9877,W,1,10,0.8,200.2,M,4.7,M,,0000%x7B"
[2] "GPGSA,A,3,14,13,15,30,23,08,07,17,05,24,,,1.4,0.8,1.1x34"

[3] "GPRMC,181529.000,A,6454.7439,N,14755.9877,W,0.00,199.96,250322,, ,A*79"

[1] "GPGGA,181530.000,6454.7439,N,14755.9877,W,1,10,0.8,200.2,M,4.7,M, ,0000%73"
[2] "GPGSA,A,3,14,13,15,30,23,08,07,17,05,24,,,1.4,0.8,1.1%34"

[3] "GPRMC,181530.000,A,6454.7439,N,14755.9877,W,0.00,199.96,250322,, ,A*x71"

[1] "GPGGA,181531.000,6454.7439,N,14755.9877,W,1,10,0.8,200.2,M,4.7,M,,0000x72"
[2] "GPGSA,A,3,14,13,15,30,23,08,07,17,05,24,,,1.4,0.8,1.1%34"

[3] "GPGSV,3,1,12,14,65,145,29,13,63,218,34,15,48,277,36,30,39,109,28*7A"

[1] "GPGSVY,3,2,12,23,24,324,20,08,22,034,09,07,16,102,17,17,10,149,34%74"

[2] "GPGSVY,3,3,12,05,08,227,25,24,07,275,26,28,48,189,30,57,39,268,*73"

[3] "GPRMC,181531.000,A,6454.7439,N,14755.9877,W,0.00,199.96,250322,, ,A*x70"

[4] "GPGGA,181532.000,6454.7439,N,14755.9877,W,1,10,0.8,200.2,M,4.7,M, ,0000%71"
[5] "GPGSA,A,3,14,13,15,30,23,08,07,17,05,24,,,1.4,0.8,1.1x34"

[6] "GPRMC,181532.000,A,6454.7439,N,14755.9877,W,0.00,199.96,250322,, ,A*x73"

[1] "GPGGA,181533.000,6454.7439,N,14755.9877,W,1,10,0.8,200.2,M,4.7,M,,0000x70"
[2] "GPGSA,A,3,14,13,15,30,23,08,07,17,05,24,,,1.4,0.8,1.1x34"

close(con)

Parsing NMEA

If the script received data from the port, it goes on to parse each line as though it was NMEA data. If
you get to this pointin the script, but errors are printed, you may have chosen a port thatis sending

serial data, but not NMEA data.

The last section of the code prints the 10 most recent coordinates from the GPS. If you get to that

point without errors, you have found the COM port you need for Seal.og to retrieve your position
data.

Was there data from the port?
if (num_lines == 0) {

print("Error: no data resembling NMEA on this port")
} else {
Do we have NMEA position data (GPGGA)
nmea_data <- tibble(raw = all_lines) %>%
filter (grepl("GPGGA", raw))

if (nrow(nmea_data) == 0) {
print("Error: no NMEA data")
} else {

Does the data contain GPS coordinates?

nmea_data <- nmea_data %>%

mutate(
fields = str_split(raw, ","),
hhmmss = map_chr(fields, ~ pluck(., 2)),
latddmm = map_chr(fields, ~ pluck(., 3)),
ns = map_chr(fields, ~ pluck(., 4)),
londdmm = map_chr(fields, ~ pluck(., 5)),
ew = map_chr(fields, ~ pluck(., 6)),

) %>%

filter(
str_length(latddmm) > 4,
str_length(londdmm) > 5

)
if (nrow(nmea_data) == 0) {
print ("WARNING: no valid locations 1in data")
} else {
nmea_data <- nmea_data %>%
mutate(

ts_utc = strptime(

paste(date(now(tzone = "UTC")), hhmmss),

"%Y-%m-%d %H%M%OS",

tz = "UTC"
)
latdd as.numeric(gsub (" ([0-9]{2}).*", "\\1", latddmm)),
latmm = as.numeric(gsub("[0-9]{2}([0-9.]+)", "\\1", latddmm)),
lat = if_else(

ns == "S",

-1 * latdd + latmm / 60.0,

latdd + latmm / 60.0

)
londd as.numeric(gsub (" ([0-9]{3}).*", "\\1", londdmm)),

lonmm = as.numeric(gsub("[0-9]{3}([0-9.]+)", "\\1", londdmm)),
lon = if_else(

ns == "W",

-1 * londd + lonmm / 60.0,

londd + lonmm / 60.0

)
) %>%

select(ts_utc, lat, lon, raw)

Print the 10 most recent locations
print(nmea_data %>% tail(10))

Successful Results

If the port has a valid NMEA stream attached to it, you should see results similar to the following
output.

A tibble: 10 x 4

ts_utc lat lon raw

<dttm> <db1l> <db1> <chr>

1 2022-03-25 18:15:47 64.912397 147.93313 GPGGA,181547.000,6454.7438,N,14755.9~
2 2022-03-25 18:15:48 64.912397 147.93313 GPGGA,181548.000,6454.7438,N,14755.9~
3 2022-03-25 18:15:49 64.912397 147.93313 GPGGA,181549.000,6454.7438,N,14755.9~
4 2022-03-25 18:15:50 64.912397 147.93313 GPGGA,181550.000,6454.7438,N,14755.9~
5 2022-03-25 18:15:51 64.912397 147.93313 GPGGA,181551.000,6454.7438,N,14755.9~
6 2022-03-25 18:15:52 64.912397 147.93313 GPGGA,181552.000,6454.7438,N,14755.9~
7 2022-03-25 18:15:53 64.912397 147.93313 GPGGA,181553.000,6454.7438,N,14755.9~
8 2022-03-25 18:15:54 64.912397 147.93313 GPGGA,181554.000,6454.7438,N,14755.9~
9 2022-03-25 18:15:55 64.912397 147.93313 GPGGA,181555.000,6454.7438,N,14755.9~

10 2022-03-25 18:15:56 64.912397 147.93313 GPGGA,181556.000,6454.7438,N,14755.9~

	Introduction
	Libraries and Ports
	Choosing a port
	Reading data
	Parsing NMEA
	Successful Results

